This page requires a JavaScript-enabled browser
Instructions on how to enable your browser are contained in the help file.
Math 11 Chapter 3
Matrices and Determinants
Test 7
1.
The matrix A is Hermitian when (
A
)
t
= ……………
a) A
b) - A
c)
A
d) A
t
2.
The square matrix A is skew-Hermitian when (
A
)
t
=……………
a) - A
b)
-A
c)
A
d) A
3.
The square matrix A is skew – Symmetric when A
t
= …………
a) A
b) 0
c) - A
d) None
4.
A squar matrix A = {aij} is upper triangular matrix when ……..
a) aij = 0 for all i > j
b) aij≠ o for all i > j
c) None
d) aij = 0 for all i < j
5.
A square matrix A = {aij}is lower triangular matrix when ………
a) aij ≠ 0 for all j < i
b) aij ≠ 0 for all i < j
c) aij = 0 for all i < j
d) aij = 0 for all i > j
6.
The co-effect of an element aij denoted by Aij is……….
a) None
b) (-1)ij Mij
c) (-1) i+j Mij
d) (-1) i-j Mij
7.
The matrix B =[ 1 4]
[ 4 8] is ---------
a) Non Singular matrix
b) None of these
c) Singular matrix
d) Symmetric matrix
8.
The matrix A = [aij] 2x3 and B = [bij] 3x2 are suitable for ……
a) A – B
b) A B
c) None
d) A + B
This is more feedback!
This is the feedback!